首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   45篇
  2021年   5篇
  2020年   2篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   17篇
  2013年   16篇
  2012年   27篇
  2011年   40篇
  2010年   11篇
  2009年   8篇
  2008年   12篇
  2007年   14篇
  2006年   17篇
  2005年   9篇
  2004年   22篇
  2003年   16篇
  2002年   17篇
  2001年   8篇
  2000年   9篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有373条查询结果,搜索用时 46 毫秒
11.
The mode of binding of acetyl-pepstatin to the protease from the human immunodeficiency virus type 1 (HIV-1) has been determined by x-ray diffraction analysis. Crystals of an acetyl-pepstatin-HIV-1 protease complex were obtained in space group P2(1)2(1)2 (unit cell dimensions a = 58.39 A, b = 86.70 A, c = 46.27 A) by precipitation with sodium chloride. The structure was phased by molecular replacement methods, and a model for the structure was refined using diffraction data to 2.0 A resolution (R = 0.176 for 12901 reflections with I greater than sigma (I); deviation of bond distances from ideal values = 0.018 A; 172 solvent molecules included). The structure of the protein in the complex has been compared with the structure of the enzyme without the ligand. A core of 44 amino acids in each monomer, including residues in the active site and residues at the dimer interface, remains unchanged on binding of the inhibitor (root mean square deviation of alpha carbon positions = 0.39 A). The remaining 55 residues in each monomer undergo substantial rearrangement, with the most dramatic changes occurring at residues 44-57 (these residues comprise the so-called flaps of the enzyme). The flaps interact with one another and with the inhibitor so as to largely preserve the 2-fold symmetry of the protein. The inhibitor is bound in two approximately symmetric orientations. In both orientations the peptidyl backbone of the inhibitor is extended; a network of hydrogen bonds is formed between the inhibitor and the main body of the protein as well as between the inhibitor and the flaps. Hydrophobic side chains of residues in the body of the protein form partial binding sites for the side chains of the inhibitor; hydrophobic side chains of residues in the flaps complete these binding sites.  相似文献   
12.
13.
Hepatic ischemia‐reperfusion (IR) injury is a common clinical problem and ROS may be a contributing factor on IR injury. The current study evaluates the potential protective effect of saffron ethanol extract (SEE) in a rat model upon hepatic IR injury. Caspases 3 and terminal deoxynucleotidyl transferase‐mediated dUTP biotin nick end labeling (TUNEL) results showed increased cell death in the IR samples; reversely, minor apoptosis was detected in the SEE/IR group. Pretreatment with SEE significantly restored the content of antioxidant enzymes (SOD1 and catalase) and remarkably inhibited the intracellular ROS concentration in terms of reducing p47phox translocation. Proteome tools revealed that 20 proteins were significantly modulated in protein intensity between IR and SEE/IR groups. Particularly, SEE administration could attenuate the carbonylation level of several chaperone proteins. Network analysis suggested that saffron extract could alleviate IR‐induced ER stress and protein ubiquitination, which finally lead to cell apoptosis. Taken together, SEE could reduce hepatic IR injury through modulating protein oxidation and our results might help to develop novel therapeutic strategies against ROS‐caused diseases.  相似文献   
14.
Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).  相似文献   
15.
Every tenth pregnancy is affected by hypertension, one of the most common complications and leading causes of maternal death worldwide. Hypertensive disorders in pregnancy include pregnancy-induced hypertension and preeclampsia. The pathophysiology of the development of hypertension in pregnancy is unknown, but studies suggest an association with vitamin D status, measured as 25-hydroxyvitamin D (25(OH)D). The aim of this study was to investigate the association between gestational 25(OH)D concentration and preeclampsia, pregnancy-induced hypertension and blood pressure trajectory. This cohort study included 2000 women. Blood was collected at the first (T1) and third (T3) trimester (mean gestational weeks 10.8 and 33.4). Blood pressure at gestational weeks 10, 25, 32 and 37 as well as symptoms of preeclampsia and pregnancy-induced hypertension were retrieved from medical records. Serum 25(OH)D concentrations (LC-MS/MS) in T1 was not significantly associated with preeclampsia. However, both 25(OH)D in T3 and change in 25(OH)D from T1 to T3 were significantly and negatively associated with preeclampsia. Women with a change in 25(OH)D concentration of ≥30 nmol/L had an odds ratio of 0.22 (p = 0.002) for preeclampsia. T1 25(OH)D was positively related to T1 systolic (β = 0.03, p = 0.022) and T1 diastolic blood pressure (β = 0.02, p = 0.016), and to systolic (β = 0.02, p = 0.02) blood pressure trajectory during pregnancy, in adjusted analyses. There was no association between 25(OH)D and pregnancy-induced hypertension in adjusted analysis. In conclusion, an increase in 25(OH)D concentration during pregnancy of at least 30 nmol/L, regardless of vitamin D status in T1, was associated with a lower odds ratio for preeclampsia. Vitamin D status was significantly and positively associated with T1 blood pressure and gestational systolic blood pressure trajectory but not with pregnancy-induced hypertension.  相似文献   
16.
The aim of this study was to investigate the role of nitric oxide (NO) in hepatic ischemia-reperfusion (I/R) injury in rats. Immunohistochemistry was used to examine the protein expression of endothelial and inducible nitric oxide synthases (eNOS, iNOS) and nitrotyrosine after I/R challenges to the liver, and blood levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH), hydroxyl radical and NO were measured before ischemia and after reperfusion. Ischemia was induced by occlusion of the common hepatic artery and portal vein for 40 min, followed by reperfusion for 90 min. Reperfusion of the liver induced a significant increase in the blood concentrations of AST, ALT, LDH (n = 8; P < 0.001), hydroxyl radical (n = 8; P < 0.001) and NO (n = 8; P < 0.01). The eNOS, iNOS, nitrotyrosine, SOD1 and SOD2 protein expression was also found to increase significantly after reperfusion (n = 3). Administration of the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (n = 8) had a protective effect on the I/R-related injury, but the NO donor L-arginine (L-Arg) (n = 8) potentiated the damage caused by I/R. These results suggest that reperfusion of the liver induces expression of NOS, which is related to the elevation of blood NO. The increase in hydroxyl radical concentration was accompanied by an increase in antioxidant enzyme expression (SOD1 and SOD2), and an increase in nitrotyrosine expression was also observed, reflecting the increased production of NO and oxygen radicals. We concluded from the protective effect of L-NAME and the potentiation by L-Arg that NOS expression and increases in NO and hydroxyl radical production have deleterious effects on the response to I/R in the liver.  相似文献   
17.
Cytotoxic ribonucleases with antitumor activity are mainly found in the oocytes and early embryos of frogs. Native RC-RNase 4 (RNase 4), consisting of 106 residues linked with four disulfide bridges, is a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana. RNase 4 belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Recombinant RC-RNase 4 (rRNase 4), which contains an additional Met residue and glutamine instead of pyroglutamate at the N terminus, was found to possess less catalytic and cytotoxic activities than RNase 4. Equilibrium thermal and guanidine-HCl denaturation CD measurements revealed that RNase 4 is more thermally and chemically stable than rRNase 4. However, CD and NMR data showed that there is no gross conformational change between native and recombinant RNase 4. The NMR solution structure of rRNase 4 was determined to comprise three alpha-helices and two sets of antiparallel beta-sheets. Superimposition of each structure with the mean structure yielded an average root mean square deviation (RMSD) of 0.72(+/-0.14)A for the backbone atoms, and 1.42(+/-0.19)A for the heavy atoms in residues 3-105. A comparison of the 3D structure of rRNase 4 with the structurally and functionally related cytotoxic ribonuclease, onconase (ONC), showed that the two H-bonds in the N-terminal pyroglutamate of ONC were not present at the corresponding glutamine residue of rRNase 4. We suggest that the loss of these two H-bonds is one of the key factors responsible for the reductions of the conformational stability, catalytic and cytotoxic activities in rRNase 4. Furthermore, the differences of side-chain conformations of subsite residues among RNase A, ONC and rRNase 4 are related to their distinct catalytic activities and base preferences.  相似文献   
18.
CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family   总被引:10,自引:0,他引:10  
CCN3 (NOV) is a matricellular protein of the CCN family, which also includes CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). During development, CCN3 is expressed widely in derivatives of all three germ layers, and high levels of expression are observed in smooth muscle cells of the arterial vessel wall. Altered expression of CCN3 has been observed in a variety of tumors, including hepatocellular carcinomas, Wilm's tumors, Ewing's sarcomas, gliomas, rhabdomyosarcomas, and adrenocortical carcinomas. To understand its biological functions, we have investigated the activities of purified recombinant CCN3. We show that in endothelial cells, CCN3 supports cell adhesion, induces directed cell migration (chemotaxis), and promotes cell survival. Mechanistically, CCN3 supports human umbilical vein endothelial cell adhesion through multiple cell surface receptors, including integrins alphavbeta3, alpha5beta1, alpha6beta1, and heparan sulfate proteoglycans. In contrast, CCN3-induced cell migration is dependent on integrins alphavbeta3 and alpha5beta1, whereas alpha6beta1 does not play a role in this process. Although CCN3 does not contain a RGD sequence, it binds directly to immobilized integrins alphavbeta3 and alpha5beta1, with half-maximal binding occurring at 10 nm and 50 nm CCN3, respectively. Furthermore, CCN3 induces neovascularization when implanted in rat cornea, demonstrating that it is a novel angiogenic inducer. Together, these findings show that CCN3 is a ligand of integrins alphavbeta3 and alpha5beta1, acts directly upon endothelial cells to stimulate pro-angiogenic activities, and induces angiogenesis in vivo.  相似文献   
19.
Lin CH  Yeh SH  Lin CH  Lu KT  Leu TH  Chang WC  Gean PW 《Neuron》2001,31(5):841-851
Western blot analysis of neuronal tissues taken from fear-conditioned rats showed a selective activation of phosphatidylinositol 3-kinase (PI-3 kinase) in the amygdala. PI-3 kinase was also activated in response to long-term potentiation (LTP)-inducing tetanic stimulation. PI-3 kinase inhibitors blocked tetanus-induced LTP as well as PI-3 kinase activation. In parallel, these inhibitors interfered with long-term fear memory while leaving short-term memory intact. Tetanus and forskolin-induced activation of mitogen-activated protein kinase (MAPK) was blocked by PI-3 kinase inhibitors, which also inhibited cAMP response element binding protein (CREB) phosphorylation. These results provide novel evidence of a requirement of PI-3 kinase activation in the amygdala for synaptic plasticity and memory consolidation, and this activation may occur at a point upstream of MAPK activation.  相似文献   
20.
A series of novel, highly potent alpha(v)beta(3) receptor antagonists with favorable pharmacokinetic profiles has been identified. In this series of antagonists, 2-aryl beta-amino acids function as potent aspartic acid replacements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号